欢迎您访问重庆自考网!  今天是
当前位置: 主页 > 串讲笔记 >

2018年10月自考(课程代码:00020)高等数学(一)复习指导(4)

2018-07-10 15:57来源:重庆自考网

  五、多元函数微积分学

 
  (一)多元函数微分学
 
  1.知识范围
 
  (1)多元函数
 
  多元函数的定义二元函数的几何意义二元函数极限与连续的概念
 
  (2)偏导数与全微分
 
  偏导数全微分二阶偏导数
 
  (3)复合函数的偏导数
 
  (4)隐函数的偏导数
 
  (5)二元函数的无条件极值与条件极值
 
  2.要求
 
  (1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。
 
  (2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。
 
  (3)掌握二元函数的一、二阶偏导数计算方法。
 
  (4)掌握复合函数一阶偏导数的求法。
 
  (5)会求二元函数的全微分。
 
  (6)掌握由方程所确定的隐函数的一阶偏导数的计算方法。
 
  (7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。
 
  (二)二重积分
 
  1.知识范围
 
  (1)二重积分的概念
 
  二重积分的定义二重积分的几何意义
 
  (2)二重积分的性质
 
  (3)二重积分的计算
 
  (4)二重积分的应用
 
  2.要求
 
  (1)理解二重积分的概念及其性质。
 
  (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
 
  (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。
 

  六、无穷级数

 
  (一)数项级数
 
  1.知识范围
 
  (1)数项级数
 
  数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件
 
  (2)正项级数收敛性的判别法
 
  比较判别法比值判别法
 
  (3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法
 
  2.要求
 
  (1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
 
  (2)掌握正项级数的比值判别法。会用正项级数的比较判别法。
 
  (3)掌握几何级数、调和级数与级数的收敛性。
 
  (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
 
  (二)幂级数
 
  1.知识范围
 
  (1)幂级数的概念
 
  收敛半径收敛区间
 
  (2)幂级数的基本性质
 
  (3)将简单的初等函数展开为幂级数
 
  2.要求
 
  (1)了解幂级数的概念。
 
  (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
 
  (3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
 
  (4)会运用麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为幂级数。
 

  七、常微分方程

 
  (一)一阶微分方程
 
  1.知识范围
 
  (1)微分方程的概念
 
  微分方程的定义阶解通解初始条件特解
 
  (2)可分离变量的方程
 
  (3)一阶线性方程
 
  2.要求
 
  (1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
 
  (2)掌握可分离变量方程的解法。
 
  (3)掌握一阶线性方程的解法。
 
  (二)可降价方程
 
  1.知识范围
 
  (1)型方程
 
  (2)型方程
 
  2.要求
 
  (1)会用降阶法解型方程。
 
  (2)会用降阶法解型方程。
 
  (三)二阶线性微分方程
 
  1.知识范围
 
  (1)二阶线性微分方程解的结构
 
  (2)二阶常系数齐次线性微分方程
 
  (3)二阶常系数非齐次线性微分方程
 
  2.要求
 
  (1)了解二阶线性微分方程解的结构。
 
  (2)掌握二阶常系数齐次线性微分方程的解法。
 
  (3)掌握二阶常系数非齐次线性微分方程的解法。
 
  考试形式及试卷结构
 
  试卷总分:150分
 
  考试时间:150分钟
 
  考试方式:闭卷,笔试
 
  试卷内容比例:
 
  函数、极限和连续约15%
 
  一元函数微分学约25%
 
  一元函数积分学约20%
 
  多元函数微积分(含向量代数与空间解析几何)约20%
 
  无穷级数约10%
 
  常微分方程约10%
 
  试卷题型比例:
 
  选择题约15%
 
  填空题约25%
 
  解答题约60%
 
  试题难易比例:
 
  容易题约30%
 
  中等难度题约50%
 
  较难题约20%
上一篇:2018年10月自考(课程代码:00020)高等数学(一)复习指导(3)

下一篇:2018年10月自考(课程代码:00041)基础会计学笔记资料(1)